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Joint Optimization Toward Effective and
Efficient Image Search
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Abstract—The bag-of-words (BoW) model has been known as
an effective method for large-scale image search and indexing.
Recent work shows that the performance of the model can
be further improved by using the embedding method. While
different variants of the BoW model and embedding method
have been developed, less effort has been made to discover their
underlying working mechanism. In this paper, we systematically
investigate the image search performance variation with respect
to a few factors of the BoW model, and study how to employ
the embedding method to further improve the image search
performance. Subsequently, we summarize several observations
based on the experiments on descriptor matching. To validate
these observations in a real image search, we propose an
effective and efficient image search scheme, in which the BoW
model and embedding method are jointly optimized in terms of
effectiveness and efficiency by following these observations. Our
comprehensive experiments demonstrate that it is beneficial to
employ these observations to develop an image search algorithm,
and the proposed image search scheme outperforms state-of-the-
art methods in both effectiveness and efficiency.

Index Terms—Bag-of-words (BoW), embedding method, high
effectiveness, high efficiency, large scale image search.

I. Introduction

IMAGE SEARCH aims to effectively and efficiently retrieve
the desired images from a large image database. However,

Manuscript received October 2, 2011; revised July 27, 2012 and December
29, 2012; accepted February 4, 2013. Date of publication March 27, 2013; date
of current version November 18, 2013. This work was supported in part by
the National Basic Research Program of China under Grant 2012CB316400,
the National Science Foundation of China under Grants 61125106, 61202241,
61025013, 61210006, 91120302, and 61072093, the Fundamental Research
Funds for the Central Universities under Grant 2012JBZ012 and Grant
2013JBM024, the Shaanxi Key Innovation Team of Science and Technology
under Grant 2012KCT-04, Program for Changjiang Scholars and Innovative
Research Team in University, and the Open Project Program of the National
Laboratory of Pattern Recognition (NLPR). This paper was recommended by
Associate Editor P. S. Sastry.

S. Wei is with the Institute of Information Science, Beijing Jiaotong
University, with the Beijing Key Laboratory of Advanced Information Science
and Network Technology, Beijing 100044, China, and also with the School of
Computer Engineering, Nanyang Technological University, 639798, Singapore
(e-mail: shkwei@bjtu.edu.cn).

D. Xu is with the School of Computer Engineering, Nanyang Technological
University, 639798, Singapore (e-mail: dongxu@ntu.edu.sg).

X. Li is with the Center for OPTical IMagery Analysis and Learning, State
Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics
and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
(e-mail: xuelong−li@opt.ac.cn).

Y. Zhao is with the Institute of Information Science, Beijing Jiaotong
University, and also with the State Key Laboratory of Rail Traffic Control
and Safety, Beijing 100044, China (e-mail: yzhao@bjtu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2013.2245890

identifying relevant images is still a challenging task due to
appearance variations in illumination, scale, viewpoint, orien-
tation, etc. [1]–[5], especially for large-scale image database.
This has been experimentally verified by TRECVID evaluation
on automatic/manual/interactive search [6]. Moreover, image
search efficiency is also becoming a critical issue with rapid
growth of the image database size.

Recently, bag-of-words model (BoW) has become popular
in multimedia search area due to its simplicity and effective-
ness [7], [8], [9]. The basic idea is to represent an image as
a collection of orderless visual words and organize all visual
words into an inverted table for efficient image search. The
earlier work focuses mainly on the construction of visual vo-
cabulary by using different vector-quantization techniques [1],
[9]–[13] to optimally approximate the local image descriptors.
Since a visual word is an approximate representation of a
local descriptor, the accuracy of image search based on the
visual word matching will be inevitably decreased due to the
quantization error. To alleviate it, the latest extensions [14],
[15] introduce additional embedding codes to compensate the
quantization error.

While a lot of BoW-based methods and embedding methods
have been proposed, less effort has been made to under-
stand their working mechanism in a quantitative manner.
For example, how the search performance is affected by the
quantization error? What is the major factor for reducing the
quantization error? How can the embedding method improve
search performance? Understanding their essentials is critical
for developing better image search systems. To this end, we
systematically study how some key factors of the BoW model
and embedding methods affect the search effectiveness and
efficiency, and summarize several observations to guide the
system design. Following these observations, we present a
new image search method, called PKMLSE, which optimally
balances the effectiveness and efficiency of the image search
system by combining partitioned k-means clustering scheme
(PKM) with a linear segment embedding (LSE) method. The
main contributions of this paper can be summarized as follows.

1) We discover the working mechanism underlying the
BoW model and embedding methods in a quantita-
tive manner, and summarize a few observations from
comprehensive experiments. While no strict proof is
given for those observations, they indeed work well for
guiding the design of better image search engines in
terms of effectiveness and efficiency. In addition, these
observations are not specific to the proposed PKMLSE
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scheme, and they can be generally applied to optimizing
the existing work. To the best of our knowledge, such
observations have never been published.

2) We propose a new scheme for efficiently construct-
ing very large visual vocabularies and assigning visual
words. Instead of generating auxiliary information of
visual words as reported in [15], the PKM method is
employed to construct visual vocabulary here. More
importantly, the proposed PKM vocabulary construction
method greatly meets the requirement of the optimal
rules in the proposed observations. As to be shown in
experimental part, the PKM scheme provides an ex-
tremely efficient mapping process from local descriptors
to visual words and an extremely small cost of memory
usage without degrading the search effectiveness.

3) We propose a discriminative embedding method, called
linear segment embedding. Although this method is very
simple, the generated embedding codes provide out-
standing capability for distinguishing true matches from
false ones. Together with the proposed PKM scheme,
the embedding method significantly improves the search
accuracy as well as decreases the computational cost by
jointly optimizing the parameter settings according to
the proposed observations.

The rest of this paper is organized as follows. We first
give a brief review about the BoW model and embedding
methods in Section II. Then, some observations, which convey
the working mechanism of the BoW model and embedding
methods, are summarized and validated in Section III. Section
IV presents the proposed PKMLSE method, which is designed
by following these proposed observations. In Section V, ex-
perimental results and performance analysis from real-world
image search are given in detail. Finally, we discuss future
work and conclude this paper in Section VI.

II. Related Work

The BoW model is first used in the areas of natural language
processing and information retrieval, in which a document
is represented as a bag of orderless words. In multimedia
search area, the BoW model is adopted to represent an image
as a collection of orderless visual words [1], where one key
issue is how to construct a visual vocabulary [16]. In essence,
the construction of visual vocabulary is to vector-quantize
the local image descriptors in a training set. A widely used
construction scheme is to perform exact k-means clustering
(FKM) and treat each cluster centroid as a visual word [9]. In
the word assignment stage, a new local descriptor is mapped
to a visual word by searching its nearest cluster centroid.
Although this method is quite effective, its time and space
complexity is extremely high, making it even unpractical
for handling a large set of training samples. To improve the
computational efficiency, a number of methods [1], [10], [11],
[17], [18] have been designed to efficiently construct visual
vocabularies. An approximate k-means clustering scheme [11]
speeds up the vocabulary construction by replacing the exact
computation with an approximate nearest-neighbor method
[19]. A hierarchical k-means clustering scheme (HKM) [1]

reduces time complexity by recursively performing k-means
clustering with a small cluster number. Other efficient
vocabulary construction schemes include [10], [17]. However,
all these methods construct visual vocabularies by quantizing
the training samples in their original feature space, which
need a very large training set when constructing a large visual
vocabulary, and thus, lead to high computational cost and huge
memory usage in the training stage. In addition, since each
visual word is separately stored as a high dimensional vector,
the memory usage for holding a large visual vocabulary is
also nontrivial in the query stage. To address these issues,
we construct a visual vocabulary by separately building a
series of small visual subvocabularies in the low-dimensional
subspaces and combining these subvocabularies by Cartesian
product. In this way, the time and space costs are only spent
on constructing and storing those subvocabularies, which is
trivial. In our latest work, some good features of PKM, such
as unbiased property, are discussed in detail [33].

Given a visual vocabulary, a commonly used paradigm for
large-scale image search is to organize the database images
with an inverted file after representing these images with
collections of orderless visual words. In particular, each visual
word corresponds to a list or cell. Given a new database
descriptor, it is mapped to a certain word by using the
nearest neighbor search, and then a new entry containing the
image ID of the descriptor is inserted into the corresponding
list. Once we have indexed all the local descriptors of the
database images to the inverted table in an off-line fashion,
the next stage is to query the inverted table when given a
query descriptor. The query process is similar to the indexing
process. Likewise, the query descriptor is first mapped to a
visual word, and then all items in the corresponding list are
returned as matches.

Since a visual word is an approximate representation of a
local image descriptor, the search accuracy that is based on
the visual word matching will be inevitably decreased due
to the quantization error. To improve the effectiveness of the
standard BoW framework, some efforts have been made on
introducing more auxiliary information. In [14], [15], and
[20], an embedding method is introduced into the standard
BoW-based scheme. The basic idea is to embed the set of
objects into points in a low-dimensional embedding space
where the distances among points approximate the distances
among objects [21], [22]. In this way, a local image descriptor
is represented by a visual word together with a compact
description in the embedding space. For example, the product
quantization based embedding (PQE) method in [15] maps
a local image descriptor into a 64-b embedding code. In
addition to introducing embedding code, it is possible to
improve the image search performance by exploring the spatial
information. To this end, Zhang et al. [23] directly take the
spatial contextual information among local image descriptors
into account when constructing visual vocabularies, whereas
others introduce the spatial information by pyramid matching
[24]–[27]. For existing embedding methods [14], [15], how-
ever, most of them are based on an underlying assumption that
a local image descriptor is only mapped into one visual word
(i.e., M = 1), while some of them show performance improve-
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ment by employing multiple assignment [28], [29]. In other
words, multiple assignment is not fully considered. In addition,
the relationship between visual vocabulary size K and the
assignment amount M are also not investigated systematically.
Note that mapping a local descriptor to M visual words is to
find out M nearest neighbors in the visual vocabulary.

In this paper, we aim at discovering the working mechanism
underlying the BoW model and embedding methods, and
propose some rules for guiding the design of better image
search systems. As we will discuss in the following sections,
understanding their essentials can benefit the design of optimal
system and significantly improve the performance in terms of
effectiveness and efficiency.

III. Observations

In a BoW-based image search framework, the search process
is the voting process of matched visual words in query image
and database images. Ideally, if visual words can perfectly
represent local image descriptors, the voting score can exactly
reflect the image similarity. However, it is almost not possible
to obtain the ideal result, as only part of the items in the
matched cell are true matches of a given query descriptor due
to the quantization error. Therefore, the image search perfor-
mance depends heavily on the quantization error. As indicated
in existing work [7], two key factors that affect quantization
error are visual vocabulary size K and vocabulary construction
method. In fact, when K is large enough, even a random quan-
tization can also obtain a good approximation. That is, we can
employ a nonoptimal method to construct a visual vocabulary
with low quantization error by enlarging the vocabulary size.

An alternative approach of complementing the quantization
error is to refine these items in the coarsely matched cell
by using the embedding methods. Only the items whose
embedding distances to the query descriptor are not more than
a threshold are returned as matches. In this way, some false
matches can be removed, and the accuracy can be improved
accordingly. For the single assignment case, when the false
matches in a cell are much more than true matches, the refining
process can remove much false matches as well as keep
enough true matches. However, when K is large, the ratio of
true matches in the matched cell is high since the quantization
error is relatively small. In this case, using the embedding
method not only prunes false matches but also removes more
true matches, which will violate descriptor matching. In other
words, the existing embedding methods only work well for
some small or medium visual vocabularies when M is set to 1.

To verify the above conclusion, we carry out several experi-
ments from the view of matching exactness and completeness.
In our experiments, we use a toy dataset for testing, where 10K
SIFT descriptors are used as query descriptors and another
1000K SIFT descriptors are treated as database descriptors.
For the original BoW model, all the database descriptors are
directly mapped to an inverted table via the preconstructed
visual vocabulary, and the searching process is conducted for
each query descriptor by returning the database descriptors
falling in the matched cells. For embedding methods, addi-
tional codes are associated with the items in cells and only the

items whose embedding distances to the query meet a thresh-
old are returned as matches. Here, the Hamming embedding
(HE) method in [20] is employed with the optimal parameter
setting reported in the original paper. In our experiments, the
100 nearest neighbors of each query descriptor are treated as
groundtruth, which are obtained by brute-force searching in all
database descriptors. To evaluate the exactness and complete-
ness of descriptor matching, we proposed two measurements,
i.e., weighted average precision (AP) and weighted average
recall (AR), which are defined as

WeightedAP =

T∑
i=1

tpi

T∑
i=1

(tpi + fpi)

· (1 − Tnull

T
) (1)

WeightedAR =

T∑
i=1

tpi

T∑
i=1

(tpi + fni)

· (1 − Tnull

T
) (2)

where tpi, fpi, and fni denote the true positives, false
positives, and false negatives of ith query, respectively. T is
the total number of queries, and Tnull is the number of queries
for which no result is returned. Using the weighted AP can
avoid not a number problem in case no result is returned for
some queries.

The experimental results for the matching exactness and
completeness are illustrated in Figs. 1 and 2, respectively.
For comparison, the precision and recall curves from the
standard BoW-based method are also plotted. As expected,
when K is relatively small (not more than 50K in our case), the
precision obtained by the embedding method is higher than the
standard BoW-based method. That is, the embedding method
is indeed effective for pruning some false matches. In fact,
after K gets up to a certain value Kthd (5K in our case), the
precision begins to decrease. When K is large enough (larger
than 50K in our case), the precision is even lower than the
standard BoW-based method, as shown in Fig. 1. Obviously,
the experimental results are consistent with our conclusion. For
the completeness of descriptor matching, the recall obtained
by the embedding method is absolutely lower than the standard
BoW-based method. This is because the embedding method is
just a refining step of items in the matched cell and no new
items are added. When it attempts to remove false matches,
some true matches are unavoidably pruned away due to the
unperfect similarity matching, leading to the decrease of recall.
Indeed, it is obvious that the recall decreases with increasing
accuracy. Giving both recall and precision curves, here, we
just want to highlight that image search quality can still be
improved by increasing match accuracy of local descriptors,
even decreasing the match recall. Now, we can formally
introduce the first observation.
Observation 1: When M = 1, the embedding method like
Hamming embedding works only well for some small or
medium vocabularies and the main contribution is to improve
the precision.
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Fig. 1. Impact of K on exactness of descriptor matching before and after
using the embedding method.

Fig. 2. Impact of K on completeness of descriptor matching before and after
using the embedding method.

In addition to the effect of visual vocabulary size, existing
embedding methods also pay less attention to the effect
of multiple assignment, especially the relationship between
multiple assignment and visual vocabulary size. Here, we carry
out some experiments to reveal the effect of M with varied K.
In this situation, one query descriptor is mapped to M cells,
and all these cells are refined by the embedding methods.
The experimental results are illustrated in Fig. 3. When K

is relatively small (e.g., lower than 5K), increasing M will
significantly decrease the precision for a fixed K. Conversely,
when K is large enough (e.g., greater than 50K), increasing
M will remarkably improve the precision for a fixed K. It
can be explained as follows. When K is small, i.e., using a
small vocabulary, there are a large number of items in each
cell. Increasing M will dramatically enlarge the set of items
that will be refined by the embedding codes. Since more items
means more confusion, it is not capable for embedding method
to correctly distinguish true matches from false matches in
such a huge set. Therefore, the precision will be decreased
with increasing M while the recall can be improved further.
In another extreme case, when K is extreme large, there are
few items in a matched cell and these items are true matches
with high probability. Although the embedding method can
still further refine these items, it is also possible to remove all

Fig. 3. Impact of M on exactness of descriptor matching using the embed-
ding method.

of them for some queries. In this case, no result is returned
for those queries, leading to missed matches. Therefore, the
weighted average precision over all queries will be deteriorated
even if the precision for some queries is one. Table I shows
the statistics on average number of reserved items in a cell
before and after refining. The average number decreases with
increasing K, and it is not more than one after K gets up
to a certain value. Obviously, if the average number is lower
than one, there are some queries with zero matched items.
The statistic results are consistent with our conclusion. Hence,
increasing M makes queries have more chances to get nonzero
number of reserved items. In addition, since quantization
error has been significantly reduced by using both a large K

and the embedding method, the reserved items are usually
true matches with high probability. Therefore, increasing M

will improve the average precision. Fig. 3 clearly shows the
tendency when K is larger than 50K.

As discussed above, there exists a threshold Kthd in M = 1
case, where the best performance is obtained. Similarly, in
the multiple assignment case, there is also a Kthd for a fixed
M, and the values of Kthd are different for different values
of M > 1. Generally, the larger the value of M is, the larger
the value of Kthd is. In other words, a large Kthd corresponds
to a large M. This is because we need more matched cells to
compensate the loss of matches caused by the refining process.
In addition, we can observe that a larger pair of (M, Kthd)
generates higher precision of descriptor matching, compared
0.581 at Kthd = 100K and M = 16 with 0.449 at Kthd = 5K
and M = 1. The reason is similar to the case of M = 1. A large
Kthd means high precision in the refined cells, and a large M

means more chance to complement the loss of missed true
matches due to the sparseness of matched cells. Note that the
sparseness is caused by both the large K and the refining step.
Now, we can formally introduce the second observation.
Observation 2: The optimal precision can be approached with
a relatively big M when K is large enough.

IV. PKMLSE Image Search Framework

The final goal of image search is to provide users with
a fast and effective image search engine. In Section III, we
introduce some observations to reveal why and how the BoW



2220 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 43, NO. 6, DECEMBER 2013

TABLE I

Statistics on Average Number of Reserved Descriptors in a Cell Before and After Refining

Method M
K

100 200 500 1K 2K 5K 10K 20K 50K 100K 200K
BoW 1 11260.44 5652.11 2298.45 1151.31 578.75 232.19 117.25 61.33 26.62 13.12 7.18

1 125.230 64.946 23.977 12.465 6.003 2.495 1.276 0.719 0.361 0.236 0.162
2 249.086 129.704 47.985 25.151 12.023 5.005 2.502 1.386 0.685 0.434 0.301

Embedding 4 485.758 254.151 94.632 50.359 24.001 9.928 4.945 2.695 1.310 0.788 0.538
8 935.408 493.672 183.876 99.009 47.031 19.460 9.600 5.145 2.476 1.427 0.957
16 1777.264 941.688 354.038 192.841 91.678 37.875 18.647 9.898 4.636 2.678 1.754

model and embedding methods work well. While no strict
proof is given for those observations, we will verify that it is
beneficial to employ these observations for the development
of new image search systems. In this section, a new image
search system is designed to verify the correctness of those
observations as a special case.

According to Observation 1, existing embedding schemes
with default setting can only work well for small or medium
visual vocabularies and are sensitive to K. Therefore, we
should design an image search scheme by following Obser-
vation 2, i.e., jointly optimizing K and M in embedding
framework. However, the traditional methods cannot optimally
balance the effectiveness and efficiency. When they signifi-
cantly improve the effectiveness by increasing both K and M,
the efficiency is decreased greatly. Therefore, we should pay
more attention to search efficiency. According to the report in
[7], the vocabulary construction method is even not optimal,
we can still achieve promising results by using both a large
vocabulary and an effective embedding method.

In brief, we need to find a vocabulary construction method
whose mapping complexity is lower than O(KM) and an
embedding scheme that can provide enough discriminative
capability. To this end, we proposed a PKMLSE based image
search framework, which combines a highly efficient vocab-
ulary construction method (i.e., PKM) with a discriminative
embedding method (i.e., LSE). As demonstrated in experi-
ments later, since the image search scheme based on PKM
and LSE is designed by following the proposed optimal rules,
it can optimally balance the effectiveness and efficiency.

A. Partitioned k-means Clustering

As discussed above, most of existing schemes are gener-
ally to construct a visual vocabulary by directly clustering
the training local image descriptors in their original feature
space, resulting in high computation and space complexity. In
addition, the efficiency of word assignment is also low.

To address these issues, we introduce the partitioned
k-means clustering scheme to construct visual vocabulary,
in which the basic idea is to decompose an unmanageably
large task into some smaller subtasks [30]. Instead of di-
rectly quantizing the input vector in its entire space, PKM
first partitions the entire vector into a number of subvectors
with lower dimensionality, and then separately quantizes each
subvector with its own vocabulary. That is, we need to
construct subvocabularies individually in subspaces [31]. In
our context, we partition the entire vector into N subvectors

and quantize each subvector with its corresponding visual
subvocabulary.

Formally, we assume that the input vectors belong to a
D-dimensional vector space RD, which can be the original
feature space or its transformed space (e.g., PCA projection).
RD is divided into a set of subspaces, which is formulated as

RD = (Rb1
b0+1, R

b2
b1+1, · · · , R

bN

bN−1+1) (3)

where bi−1 + 1 and bi determine the component boundaries
of subspace R

bi

bi−1+1 in the original space RD. Note that all
the subspaces are obtained by uniformly partitioning the
space components into several groups. For example, a 128-
dimensional space can be divided into two unoverlapped 64-
dimensional subspaces. The step-by-step is as follows.

1) Get a training set of images.
2) Extract local descriptors (D-dimensional) from all the

training images.
3) Divide uniformly description space into N subspaces

(Rb1
b0+1, R

b2
b1+1, · · · , R

bN

bN−1+1).
4) Perform independently k-means clustering on all de-

scriptors in each subspace and form subvocabulary Vi

with L visual subwords, where i = 1, 2, · · · , N.
5) Build the final vocabulary V by Cartesian product, i.e.,

V = V1 × V2 × · · · × VN .

After the Cartesian product step, we can obtain a final visual
vocabulary with LN visual words. Note that a final visual
word is constructed by concatenating the words in individual
subvocabularies.

B. Linear Segment Embedding

As analyzed above, the embedding methods can remarkably
improve the precision of descriptor matching by pruning lots
of false matches via the embedding codes of descriptors. In
essence, the embedding codes are compact representation of
descriptors, so the discriminative capability of those embed-
ding codes will heavily impact the pruning quality. Therefore,
it is necessary to develop high discriminative embedding codes
that can correctly remove false matches as well as keep true
matches.

In this section, we present a fast and effective embedding
method, which generates a binary representative code by
employing the linear segment approximation method. This
method includes two main steps, i.e., vector segmentation
and binary value calculation. Suppose we have constructed a
visual vocabulary V = {v1, v2, · · · , vK}. All the binary codes
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of original local image descriptors are generated against the
visual vocabulary V .

Formally, we assume that the descriptor and the visual word
belong to a D-dimensional vector space RD. Given a local
image descriptor X = (x1, · · · , xD), it is uniformly divided
into s segments of length d, i.e., D = s × d. Let Sx

j be the jth
segment of X, that is

Sx
j = (x(j−1)×d+1, · · · , xj×d). (4)

Then, we construct a binary vector B of length s for X as

B = (b1, · · · , bs) (5)

bj =

{
1, if mean(Sx

j ) − mean(Sv∗
j ) > 0

0, otherwise
(6)

v∗ = min
vi∈V

‖X − vi‖2 (7)

where bj is a binary bit generated for segment Sx
j , and Sv∗

j

denotes the jth segment of visual word v∗. Here, Equation
(7) means that the given descriptor X is mapped to its nearest
visual word v∗ in terms of Euclidean distance. The length of
binary code is determined by the number of segments. For
example, let X = (1, 3, 5, 7) be a 4-D local image descriptor,
and v∗ = (2, 4, 6, 4) is its nearest visual word. Assume that X

is uniformly divided into two segments, i.e., Sx
1 = (1,3) and

Sx
2 = (5,7). Then, b1 is set to 0 since mean(Sx

1 ) = 2 is lower
than mean(Sv∗

1 ) = 3. Similarly, b2 is set to 1 since mean(Sx
2 )

= 6 is greater than mean(Sv∗
2 ) = 5.

C. Complexity Analysis

For time complexity, the main computational cost in the
searching process is two-fold. The first time-consuming pro-
cess is to map each descriptor in the query image to the nearest
neighbor in the visual vocabulary. For the FKM-based image
search system, the computational cost is linearly increasing
with respect to the vocabulary size K, leading to a complexity
of O(K). In addition to the size of visual vocabulary, the
computational cost of the HKM- and PKM-based image search
systems is also related to the number of layers l and the
number of subspaces N, respectively. For a fixed K, the time
complexity of HKM and PKM is O(K1/l) and O(K1/N/N),
respectively. Therefore, if l and N are same, the efficiency of
PKM clearly outperforms HKM.

The second time-consuming process lies in the score voting
process. In essence, the voting process is to accumulate
the scores between query descriptors and matched database
descriptors. Therefore, the computational complexity of score
voting is related to the number of query descriptors and the
number E of matched descriptors in the database. For a
single query descriptor, the expected computing cost Cori is
as follows [20]:

Cori =
K∑
i=1

pi × (E × pi) = E

K∑
i=1

p2
i (8)

where pi is the probability of assigning the query descriptor
to the ith visual word. To obtain the minimum cost C∗

ori, pi

should be equal to 1/K, i.e., all lists in the inverted table are
of equal length. In this case, C∗

ori = E/K.
In our context, however, we attempt to improve search

effectiveness by significantly enlarging the vocabulary size
and using multiple assignment. Therefore, given a singe query
descriptor, we define a new computing cost function as

Cnew = M × E

n×K∑
i=1

p2
i (9)

where M is the number of visual words the query descriptor
is mapped to, and n indicates that the vocabulary is enlarged
n times, i.e., the size of new vocabulary is n × K. Likewise,
we can obtain the minimum cost by setting pi to 1/(n × K),
i.e., C∗

new = E
n×K

× M = E
K

× M
n

.
Clearly, C∗

new is smaller than C∗
ori when M is smaller than

n. This means that it is theoretically possible to improve effec-
tiveness without decreasing search efficiency by employing the
new rules driven from the proposed observations. In practice, it
is more possible for FKM method to approach the theoretical
minimum cost. For the proposed PKM method, while the
probabilities of assigning a given descriptor to different visual
words are more unbalanced, it provides extremely mapping
efficiency and can speed up the voting process by employing
a large n and a relatively small M.

D. Multiple Assignment

Our main principle of designing image search system is to
combine a large visual vocabulary with multiple assignment as
indicated in Observation 2. Therefore, the PKM scheme dis-
cussed in Section III should be extended to facilitate multiple
assignment. In essence, multiple assignment is KNN problem
rather than NN search, i.e., mapping a given descriptor to
several nearest visual words. To this end, we proposed a simple
but effective method to perform KNN search.

Suppose we have constructed a visual vocabulary V =
V1 × V2 × · · · × VN by using the PKM scheme. Given a
partitioned descriptor XD = (Xb1

1 , X
b2
b1+1, · · · , X

bN

bN−1+1), we
perform a KNN search for any subvector X

bi

bi−1+1 against its
corresponding visual subvocabulary Vi and get a set V ∗

i with
k nearest subwords, which is denoted as follows:

V ∗
i = KNN(Xbi

bi−1+1, Vi). (10)

Combining V ∗
i from different partitions by Cartesian prod-

uct, we can get a set with kN nearest visual words of XD

as

Vsub = V ∗
1 × V ∗

2 × · · · × V ∗
N. (11)

As indicated in (11), M should be equal to the size of Vsub,
i.e., M = kN . However, we clearly know the value of M and
N in practice, so what we need is to select a proper k. Here,
we round M1/N to its nearest integer toward infinity as shown
in (12), and assign the integer to k. Clearly, the true M is not
less than the expected M. In our experiments, since we split
the original feature space into two subspaces (i.e., N = 2),
the expected M values such as 1 and 16 can be obtained
exactly by setting k to 1, 4, respectively. For the case of M = 2,
the true value of M is set to 4 (i.e., k = 2). That is, two
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nearest neighbors {A1, A2} and {B1, B2} are remained for the
first subspace and the second subspace respectively, which
form four final matches, i.e., (A1, B1), (A1, B2), (A2, B1) and
(A2, B2). To give a fair comparison, only (A1, B1) and (A2, B1)
are remained as two best matches in our experiments

k = ceil(M1/N ). (12)

E. Sketch of PKMLSE Scheme

Similarly to the existing image search scheme, the proposed
PKMLSE scheme also includes two key components, i.e., the
indexing process of database and the searching process of
query. Here, we will give a sketch of the proposed scheme
by using pseudocode as follows.

1) Train visual subvocabularies {Vi} in individual subspaces
R

bi

bi−1+1.
2) Construct the final PKM visual vocabulary V = V1 ×

V2 × · · · × VN by Cartesian product.
3) For any database image I:

a) extract its key points and describe each point with
SIFT descriptor;

b) map each local image descriptor into the nearest
visual word and insert the image id to the cell
associated with the visual word.

4) Given a query image Q:
a) extract its key points and describe each point with

SIFT descriptor;
b) map each local image descriptor into the nearest

visual words and return all image ids in corre-
sponding cells;

c) vote image ids returned for all query descriptors
and rank them according to their scores.

V. Experiments

A. Experimental Setup

In our experiments, two datasets, i.e., Holidays and
Flickr1M datasets, are used for training and testing. The
detailed information can be found in [31] and [32]. Note that a
set of total 1M descriptors are sampled from Flickr1M dataset
to learn the visual vocabularies.

For the performance evaluation, we employ average pre-
cision (AP) and mean average precision (MAP) measures.
AP corresponds to the area under recall and precision curves.
After obtaining the AP for each query, we calculate MAP by
averaging APs over all the queries, which indicates the overall
performance of all the query images.

B. Evaluation on Observations

According to Observation 1, the embedding method can
only work well for small or medium vocabularies when M

is set to one. Intuitively, applying embedding method to
image search should have similar conclusion. To validate it,
we implement four schemes which combine different vocab-
ulary construction and embedding methods, i.e., FKM+HE,
PKM+LSE, HKM+LSE, HKM+HE. The performance vari-
ation with respect to the vocabulary size K are plotted in

Fig. 4. Impact of K and M on the search performance of FKMHE method.

Figs. 4–7. We can observe that the performance is not always
improved with increasing the size of vocabulary when M = 1.
When K is lower than a certain value Kthd(e.g., Kthd = 20K

in Fig. 4), increasing K will accordingly improve the image
search quality. Nevertheless, when K is larger than Kthd , the
performance will dramatically degrade with the increasing of
K. That is, embedding method does not work well for image
matching with a large vocabulary, which is consistent with
Observation 1. The explanation is similar to the analysis in
Section III. When K is larger than Kthd , the precision of
descriptor matching will decrease due to zero matches of some
query descriptors. Note that the analysis is based on the case
of M = 1 which is the default setting for most of the existing
embedding methods.

In Section III, we also point out that for any M > 1, there
is also a Kthd for a fixed M, and a pair of M and Kthd with
enough large values tends to obtain the optimal precision. We
carry out experiments to validate whether these conclusions
hold in image matching. The experimental results are also
shown in Figs. 4–7. It is clear that the search performance
using multiple assignment consistently outperforms the single
assignment while using large vocabularies. For a fixed M,
there is always a threshold Kthd where the best performance is
obtained. That is, the conclusions for descriptor matching hold
in image matching. In addition, a larger pair of M and Kthd

always performs better than a smaller pair, compared 0.7685
at Kthd = 500K and M = 16 with 0.6995 at Kthd = 50K and
M = 1 in Fig. 5. It is also consistent with the analysis in
Section III.

C. Evaluation on Approximation

Although combining a large visual vocabulary with a large
M can significantly improve the search accuracy, it leads to an
intractable computational cost for vocabulary construction and
multiple assignment if using traditional methods. Therefore,
we introduce a new and simple method to efficiently perform
vocabulary construction and multiple assignment, i.e., PKM.
As stated in Section III, the different vocabulary construction
methods lead to comparable results when K is large enough.
That is, even the vocabulary construction methods are not
optimal, we still achieve promising results by using a large
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Fig. 5. Impact of K and M on the search performance of the PKMLSE
method.

Fig. 6. Impact of K and M on the search performance of HKMLSE method.

Fig. 7. Impact of K and M on the search performance of HKMHE method.

vocabulary and an effective embedding method. To validate
this assumption, we compare the proposed PKM scheme with
a commonly used HKM scheme. For fair comparison, both
schemes are combined with the same proposed LSE embed-
ding scheme. The experimental results are illustrated in Fig. 8.
As expected, the performance of PKM is comparable when K

is large enough (e.g., K > 100K), while HKM is better than
PKM when the vocabulary size is small. Since our purpose is
to design a better image search system by combining a large

Fig. 8. Evaluation on the effectiveness of the proposed PKMLSE scheme.

vocabulary with a large M, PKM meets our requirement. Note
that the discriminative power of PKM scheme is weak when
K is small. When K is less than 200K, the precision of PKM
is even less than random quantization with a small K due to
the effect of marginalization. Fortunately, the PKM scheme
can easily generate a very large visual vocabulary and map a
local descriptor to visual words with trivial cost. In addition,
PKM also has more good properties compared to HKM, such
as less memory usage, higher efficiency. We will discuss them
in more detail in Section V-F.

D. Evaluation on Embedding Methods

As analyzed in Section III, the embedding methods can
remarkably improve the precision of descriptor matching by
pruning lots of false matches via the embedding codes of
descriptors. In essence, the embedding codes are compact
representation of descriptors, and their discriminative capa-
bility will significantly impact pruning quality. Therefore, it
is necessary to develop high discriminative embedding codes
that can correctly remove false matches as well as retain
true matches. In this subsection, we compare the proposed
LSE embedding method with two state-of-the-art methods, i.e.,
HE and PQE methods. For fair comparison, we employ the
same visual vocabulary construction method for all embedding
methods. Intuitively, it is a good choice to treat the proposed
PKM scheme as the fixed vocabulary construction method.
However, it is not easy to combine Hamming embedding
method with the proposed PKM scheme. The main reason
lies in that generating the Hamming embedding code requires
median vectors that are constructed by using the original
training samples associated with individual visual words in
the training stage. Given a training set, when we construct
the visual vocabulary by using some regular clustering meth-
ods such as k-means clustering and hierarchical k-means
clustering, each visual word is associated with at least one
training sample. Using the training samples remained for a
visual word, we can construct a median vector needed for
generating Hamming embedding code. However, the vocab-
ulary construction manner of PKM is very different from
those regular methods. To construct a large vocabulary, we
need only construct a series of subvocabularies using a small
training set, and combine these subvocabularies by Cartesian
product. This means that no a single original training sample is
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Fig. 9. Evaluation on the effectiveness of the LSE embedding scheme.

TABLE II

Results for Different Image Search Schemes

Method Effectiveness (MAP) Efficiency (s)
HKM+HE 0.761 4.775
HKM+PQE 0.779 10.536
HKM+LSE 0.783 4.254
PKM+LSE 0.751 3.909

associated with a visual word. Therefore, using PKM scheme
cannot build the median vector for a visual word. In our
experiments, we adopt hierarchical k-means clustering method
to construct visual vocabulary. The experimental results are
illustrated in Fig. 9. Both HKMLSE and HKMPQE clearly
outperform HKMHE scheme, and the proposed HKMLSE is
better than HKMPQE scheme. This means that the proposed
LSE embedding scheme has better discriminative capability
and can more effectively prune false matches. In addition,
Table II lists the search precision of HKMHE, HKMPQE,
HKMLSE and PKMLSE schemes by using K = 20 000 (which
is the general setting for existing work in [28]). As shown in
Table II, the HKMLSE scheme outperforms the other state-of-
the-art embedding schemes with the same HKM scheme. This
means that the proposed LSE embedding method performs
better than PQE and HE embedding methods for the general
setting. Note that the search precision of PKMLSE with K =
20 000 is inferior to other schemes. The main reason is that
the marginalization of PKM degrades the search precision due
to the relatively small size of visual vocabulary. Fortunately,
the effect of marginalization can be greatly alleviated by using
a large size of visual vocabulary.

E. Effect of Marginalization

Since features are correlated, directly decomposing feature
space will definitely lead to information loss. In the subsection,
we will discuss the effect of marginalization on image search
performance. As shown in Fig. 10, the search performance ob-
tained by using the PKM scheme decreases when N increases
from 2 to 8. That is, marginalization reduces the discriminative
power of the original features. From the view of visual
vocabulary construction, this means that the quantization error
of PKM is large and discriminative capability of visual words
from PKM is not optimal. In Fig. 11, we compare the PKM

Fig. 10. Effect of subspace number on image search performance.

scheme with two generally used FKM and HKM schemes.
Since setting N to 2 can greatly reduce the computational
cost when constructing a large-scale vocabulary (e.g., K =
1M), we only set N to 2 in our experiments. As shown,
the image search performance by using the PKM scheme is
inferior to both FKM and HKM schemes for any fixed K. That
is, the marginalization of the PKM scheme indeed enlarges the
quantization error compared to other schemes.

However, it cannot affect the final conclusions in the paper.
The essential of BoW method is to get a certain number of
points (i.e., visual words) in the original feature space, and to
divide the space into a series of regions (i.e., cells) according
to these points. The local descriptors in database are then
assigned to their nearest regions. While the optimal visual
vocabulary construction scheme will lead to more discrimi-
native power of the original feature, the nonoptimal ones can
easily obtain a comparable or better performance by using a
larger visual vocabulary. That is, the size of visual vocabulary
plays a more important role than the construction methods.
Therefore, while marginalization of PKM makes lots of visual
words useless, there are still enough visual words to provide
discriminative power when the size of vocabulary is large
enough. For example, when size of visual vocabulary increases
from 200K to 1M, the search performance is remarkably
improved from 0.426 to 0.468. Fortunately, the PKM scheme
can easily generate a very large visual vocabulary and can map
local descriptors to visual words with high efficiency. More
important, the embedding code can greatly alleviate the effect
of marginalization. As shown in Fig. 8, when visual vocabulary
size is large enough (here, larger than 100K), the PKM
scheme achieves comparable or better performance to the
HKM scheme with the same embedding method (i.e., LSE).

F. Complexity Evaluation

In this subsection, we will analyze the complexity of
BoW-based embedding methods from two aspects, i.e., space
complexity and time complexity. Since the on-line query stage
is more important for users, we only discuss the complexity
in the searching process.

For space complexity, the main memory usage lies in two
steps: index structure (here, inverted table) loading and query
preprocessing. Since we use the same index structure for all the
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Fig. 11. Comparison of different visual vocabulary construction methods.

methods, the main difference lies in the query preprocessing
step. For FKM and HKM schemes, the memory usage is
only related to the size of visual vocabulary and descriptor
dimension, i.e., O(K × D). However, HKM scheme requires
more space, as the intermediate nodes need to be stored to
speed-up word assignment. In contrast, the space complexity
of PKM scheme is only O(K1/N × D). Clearly, the space
complexity of PKM scheme is far lower than two generally
used schemes.

For time complexity, the computational cost in query stage
includes word assignment, embedding code generating and
score voting process. However, there is no efficiency compar-
ison for the process of generating embedding code. The main
reason is that the time cost for generating embedding code can
be negligible compared to other two steps. As analyzed in Sec-
tion IV-C, the proposed PKM scheme can theoretically achieve
higher efficiency than the existing schemes (e.g., FKM, HKM).
Here, we experimentally validate the conclusion in the real-
world image search system. In our experiments, Flickr1M and
Holiday datasets are treated as training and testing datasets
respectively, and l and N are set to 2. The experimental results
are illustrated in Table III. As expected, these results are
consistent with our conclusion. More interestingly, compared
to HKM, there is a larger gain beyond the theoretical value
(twice times for l = N = 2) for PKM scheme. This is possibly
because the memory access of PKM is far less than HKM
scheme.

As discussed in Section IV-C, the computational cost in
voting process phase is related to the number of matched
descriptors in database, which heavily depends on the visual
vocabulary construction methods. In addition, matching effi-
ciency of different embedding methods also plays an important
role in score voting. Since our main purpose is to evaluate the
effect of different embedding methods on voting efficiency,
we employ the same visual vocabulary construction method,
i.e., the HKM scheme. The experimental results are shown in
Table IV. The matching efficiency of HE and LSE schemes
are comparable at almost all the visual vocabularies sizes. This
is because both of them employ the same Hamming distance.
In contrast, the PQE method has higher matching efficiency
when visual vocabulary size is relative small, whereas HE
and LSE schemes perform better when vocabulary size is
large. For small visual vocabularies, the number of items

TABLE V

Results for Four Different Image Search Schemes

Methods MAP
BoW 0.306
HE 0.497
PQE 0.517
PKMLSE 0.530

in the matched cells are very large, using ADC matching
method in PQE scheme will save lots of time. Nevertheless,
when vocabulary size is large, the amount of items needed to
refine will dramatically decrease. In this satiation, Hamming
distance is more efficient than ADC matching, as the cost of
constructing a lookup table for ADC is no long trivial.

For the whole search efficiency, it is difficult to give a fair
comparison since the different implementations will greatly af-
fect the final results, especially on a large-scale database (e.g.,
1M images). To give a rough comparison, we still make some
experiments for different schemes on the Holidays dataset by
using the general setting (i.e., K = 20 000). As shown in
Table II, the PKMLSE scheme remarkably outperforms HKM-
based schemes in average search time. This means that PKM
vocabulary construction method indeed gains higher search
efficiency. In fact, when the size of visual vocabulary is large
scale, the search efficiency of PKM based scheme will be
more outstanding. Note that all the results are obtained by
using a computer with 3.33 GHZ Intel Xeon(R) CPU, 18 GB
and MATLAB implementation.

In brief, the proposed PKMLSE method can achieve out-
standing search efficiency, and the majority of complexity
reduction comes from the PKM scheme.

G. Large Scale Image Search

In this section, the proposed method is further compared
with several state-of-the-art methods, i.e., Hamming embed-
ding method [14] and product quantization based embed-
ding method [15], for large-scale image search. To our best
knowledge, these two state-of-the-art approaches remarkably
outperform other existing image search methods. The detailed
analysis for previous methods can be found in [14]. To give a
complete comparison, one more frequently used state-of-the-
art baseline, i.e, original BoW scheme, is also provided for
comparison. Since the comparison is focused on jointly opti-
mizing BoW and embedding methods, post-processing steps,
such as weighting, geometrical verification and reranking, are
not taken into account for all the methods. We evaluate these
systems on a large scale database, i.e., Flickr1M + Holidays
dataset, which contains over 1M images. The SIFT descriptors
are extracted and also available online [32].

Table V lists the experimental results of four methods. For
BoW, Hamming embedding and PQE methods, the results are
directly copied from [14] and [15]. These results are obtained
on the same testing dataset with the optimal parameter settings.
For the proposed method, we set the parameters following the
proposed observations. Note that the parameter setting is not
specially tuned to be optimal since an empirical setting leads
to a good result. In our experiments, the visual vocabulary is
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TABLE III

Time Cost (Seconds) on Word Assignment for Three Different Image Search Schemes

Method
K

1K 2K 5K 10K 20K 50K 100K 200K 500K 1000K 2000K
FKM 86.5 166.4 391.0 760.8 1491.8 3701.3 7377.6 14702.4 36728.1 73469.0 146844.5
HKM 418.6 420.8 432.9 445.7 467.3 510.4 538.7 577.6 688.4 790.8 1115.9
PKM 9.9 12.39 15.89 17.8 27.58 36.0 48.4 62.5 93.0 127.3 192.7

TABLE IV

Time Cost (Seconds) on Score Voting for Three Different Image Search Schemes

Method
K

1K 2K 5K 10K 20K 50K 100K 200K 500K 1000K 2000K
HE 1639.5 1010.3 537.4 420.5 350.8 312.0 308.3 305.8 300.0 298.6 297.8
PQE 569.5 475.2 418.7 406.2 398.4 395.2 393.3 393.3 393.1 392.3 392.3
LSE 2178.7 1259.8 610.1 454.8 361.1 319.0 300.4 295.3 291.6 288.5 287.3

obtained by the proposed PKM method with two subspaces
(N = 2) and 2M visual words (K = 2M). And M is set to 16.
For the embedding code generation, we uniformly divide each
original 128-dimensional vector into 64 segments and generate
a 64-b embedding code. Another important parameter is the
number of reserved matches after using the embedding codes
to prune false matches. In our experiments, it is empirically
set to 5, namely, only 5 most possible matches are reserved
for each query descriptor. As shown in Table V, the MAP
of the proposed method is 0.530, which is much better than
0.306, 0.497 and 0.517 from the state-of-the-art methods.
These results again validate that the proposed observations are
indeed useful for designing a better image search scheme.

VI. Conclusion

In this paper, we systematically investigated the underly-
ing working mechanism of the BoW model and embedding
methods, and summarized several observations based on the
experiments on descriptor matching. Following these obser-
vations, we proposed a new image search scheme, which is
jointly optimized in terms of effectiveness and efficiency. Our
comprehensive experiments demonstrated that these observa-
tions were beneficial to designing new image search schemes.
In addition, we also tested the proposed scheme on a very
large image dataset in order to demonstrate its scalability.
The experimental results showed that the proposed approach
outperformed the state-of-the-art methods.

However, while the proposed image search scheme achieved
outstanding performance, the issue of memory usage existing
in previous work was still not addressed. The inverted table,
whose size is closely related to the number of local descriptors
and the length of embedding code, cannot be fitted into
memory. In the future, we will develop some more compact
image representation to address this problem.
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